Preliminary Study on Pyrolysis of Polymethylsilsesquioxane by FT-IR and XPS

Jun MA, Qing Yang FENG, Liang He SHI, Jian XU*

State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080

Abstract: Changes of composition and structure of various samples of polymethylsilsesquioxane (PMSQ) pyrolysed at different temperature under flowing nitrogen were investigated by means of FT-IR and X-ray photoelectron spectroscopy. Two temperature domains correspond to important changes in the chemical composition of PMSQ. The former ($T_p < 500^{\circ}$ C) is related to the transition from regular structure to irregular structure and the latter ($T_p > 500^{\circ}$ C) is associated with the organic-inorgnic transition.

Keywords: Polymethylsilsesquioxane, pyrolysis, X-ray photoelectron spectroscopy.

The term polysilsesquioxanes in this paper refers to all structures with the empiri-cal formulas $(RSiO_{32})_n$ where R is hydrogen or any alkyl, alkylene, aryl, arylene, or organo-functional derivatives of alkyl, alkylene, or aryl. Polymethylsilsesquioxane (PMSQ) is characterized by its low weight loss at high temperatures. X-ray photoelectron spectroscopy (XPS) characterization of PMSQ was unavailable from reported literatures. In this study, the pyrolysis was carried out in an inert atmosphere up to 900°C. The conversion process, intermediate and final products were characterized by FT-IR and X-ray photoelectron spectroscopy (XPS). PMSQ was synthesized from methyltrimethoxysilane by hydrolysis/condensation and then crosslinked in air at 80°C for 3 hours, as described elsewhere¹.

Infrared spectra over the wavenumber range from 400 to 4000 cm⁻¹ of the pyrolysed PMSQ heated in N₂ are shown in **Figure 1** (Perkin-Elmer System 2000 spectrometer). The absorption bands at around 2900 cm⁻¹ belong to the C-H vibrations of -CH, $-CH_2$, and $-CH_3$ groups. The methyl groups (CH₃) are also characterized by absorption bands of 1410 cm⁻¹ and 1275 cm⁻¹, respectively. The Si-CH₃ band intensity decreases with increasing heat-treatment temperature and its corresponding structure is decomposed around 700°C and disappeared completely at 900°C. Typical polysilsesquioxane absorption bands are at 1030 and 1130 cm⁻¹, corresponded to the regularity of ladder-like polysilsesquioxane². With increase of pyrolysis temperature, the band intensity of 1130 cm⁻¹ decreases, but the band intensity of 1030 cm⁻¹ increases.

^{*} E-mail: jxu@pplas.icas.ac.cn

Jun MA et al.

1.4 1.2 90000 1.0 700°C < 0.8 5 0 0°C 0.6 2900cr 0.4 0.2 3000 2500 2000 1500 1000 500 сm

Figure 1 FT-IR spectroscopy of PMSQ heated at different temperature

It means the regularity of PMSQ decreases with increase of pyrolysis temperature. At 900°C, the two bands disappeared and a strong and large absorption band appeared at 1100 cm⁻¹. This large band is similar to that of SiO_2^{-3} . It seems that organic group gradually disappears with increasing temperature.

The XPS spectra were recorded (ESCALAB 220I-XL XPS spectrometer) with AIK α (1486.6 eV) as the excitation source on the analyzed area of the pyrolysed material having a width of about 150 µm and a length of 150 um. The X-ray source power is 15 kV×20 mA. The analysis were performed under a residual pressure less than 5×10⁻⁷ Pa after heat-treated at 200, 500, 700 and 900°C respectively in N₂. Because all the materials were insulators, the charge effect was calibrated with contaminated carbon (C 1s peak at 284.6 eV).

XPS analysis performed at different stages of pyrolysis shows all materials are made of silicon (Si2s and Si2p peaks), carbon (1s peak) and oxygen (O1s peak), as illustrated in **Figure 2**.

Figure 2 XPS spectrum of PMSQ crosslinked in air and heated at 900°C under an inert atmosphere

1.6

Study on Pyrolysis of Polymethylsilsesquioxane by FT-IR and XPS 77

The Si 2p peak consists of two or three components⁴⁻⁷. The peak at about 101 eV is assigned to Si-C bonds, whereas the peak at about 103eV has been assigned to Si-O bonds, which is similar to those present in silica⁴. Finally, the peak at about 104 eV for the polymeric materials that increases at first and then decreases as pyrolysis proceeds towards inorganic state. The signal observed between Si-C and Si-O bonds was assigned to the ternary Si (C, O) species. A similar component has also been reported^{5,6}.

 Table 1
 Binding energies (eV) corresponding to different atomic bonding in various materials containing silicon

Materials	Si(C, O) (III)	Si-O (II)	Si-C (I)	References
SiO-layer on silicon	102.2	103.2	101.1	4
Ex-PCS filament surface	102.2	103.2	101.1	5
bulk	101.9		100.8	6
CVD SiC		103.4	101.2	7
PMSQ surface pyrolysed at 900°C	102.3	103.5		Present work

XPS data recorded from pyrolysed PMSQ, crosslinked in air and heat-treated under an inert atmosphere at different temperatures, confirmed the complex chemical nature of ex-organosilicon precursor, which has been already mentioned by several researchers^{7,8,9,10}. In order to ascertain assignments of the XPS peak components to chemical bonds, our data in **Table 1** are compared with data available from literature for silicon-based materials. The binding energies derived from component I of Si 2p peaks can be assigned to Si-C bonds. The binding energy, corresponding to component II of the Si 2p Si-O bonds, is similar to those mentioned for silica⁴. Finally, component III of the Si 2p was assigned to the ternary Si (C, O) species as already proposed by many researchers^{4,6,8,11}.

The energy values corresponding to the various chemical bonds, derived from the XPS peaks (recorded in the high-resolution mode) are listed in **Table 2**.

PMSQ	Si2p				
treatment	Si (C, O) (III)	Si-O (II)	Si-C (I)		
At 200°C	102.4	103.3	101.3		
At 500°C	102.5	103.5	101.3		
At 700°C	102.4	103.3			
At 900°C	102.3	103.5			

 Table 2 Binding energies (eV) derived from the XPS peaks in heat treated PMSQ at different stages of pyrolysis

A quantitative analysis of the chemical bonds in the materials at different steps of the PMSQ heat-treatment is given in **Table 3**. It shows that two temperature domains correspond to important changes in the chemical composition of the PMSQ: *i.e.* Tp $< 500^{\circ}$ C and Tp $> 500^{\circ}$ C. The former is related to the transition from regular structure to irregular structure and the latter is thought to be associated with the organic-inorgnic transition. From room temperature to 500° C, the values of Si-O and Si-C bonds decrease, but that of Si (C, O) increases.

Jun MA et al.

Matarials	Si2p			
wraterrais	Si(C,O)(III)	Si-O (II)	Si-C (I)	
At 200°C	60.1	21.5	18.3	
At 500°C	71.9	13.2	14.8	
At 700°C	10.6	89.3		
At 900°C	8.3	91.6		

 Table 3 Quantitative XPS analysis of the chemical bonds (at.%) at different stages of pyrolysis

According to FT-IR result, the regularity of PMSQ decreases at that temperature interval. Therefore, the change of the values of Si-O, Si-C and Si (C, O) bonds means the decrease of the regularity of PMSQ. During the organic-inorgnic transition at 500-900°C, the percentage of Si-O bond increases magnificently, but the value of Si (C, O) decreases excessively. It proves that the main component of the final pyrolysed product is SiO₂. The data also show that the materials heat-treated at 700 and 900°C are almost free of Si-C.

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No. 20074039) and State Key Laboratory of Polymer Physics & Chemistry of Institute of Chemistry of Chinese Academy of Sciences (No. 00-B-01).

References

- 1. J. Ma, J. Xu, Chinese Patent 130, 514. X, 2000.
- 2. Z. S. Xie, Z. Q. He, X. R. Dai, R. B. Zhang, Chinese J. Polym. Sci., 1989, 7 (2): 183.
- 3. Atlas of Polymer and Plastics Analysis, 2nd. Federal Republic of Germany, 1980, 3.
- 4. J. A. Taylor, Appl. Surf. Sci., 1981, 7, 168.
- 5. E. Bouillon, D. Mocaer, J. F. Villeneuve, J. Mater. Sci., 1991, 26, 1517.
- 6. L. Porte, A. Sartre, J. Mater. Sci., 1989, 2, 271.
- 7. Y. Mizokawa, K. M. Geib, C. W. Wilmsed, J. Vac. Technol. A., 1986, 4, 1696.
- 8. J. Lipowitz, H. A. Freeman, R. T. Chen, E. R. Prack, Adv. Ceram. Mater., 1987, 2, 121.
- 9. C. Laffon, A. M. Flank, R. Hagege, P. Olry, J. Cotteret, J. Mater. Sci., 1989, 24, 1503.
- C. D. Wager, *Handbook of X-Ray Photoelectron Spectroscopy*, Perkin-Elmer Corporation Physical Elecronics Dicision 6509 Flying Clound Drive Eden Prisiric, Minnesota, **1979**, Part 52.
- 11. L. C. Aswyer, R. T. Chen, F. Haimback, P. J. Harget, Ceram. Engng. Sci. Proc., 1986, 7, 914.

Received 18 April, 2001